Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2740, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548733

RESUMO

Photoreceptor proteins utilise chromophores to sense light and trigger a biological response. The discovery that adenosylcobalamin (or coenzyme B12) can act as a light-sensing chromophore heralded a new field of B12-photobiology. Although microbial genome analysis indicates that photoactive B12-binding domains form part of more complex protein architectures, regulating a range of molecular-cellular functions in response to light, experimental evidence is lacking. Here we identify and characterise a sub-family of multi-centre photoreceptors, termed photocobilins, that use B12 and biliverdin (BV) to sense light across the visible spectrum. Crystal structures reveal close juxtaposition of the B12 and BV chromophores, an arrangement that facilitates optical coupling. Light-triggered conversion of the B12 affects quaternary structure, in turn leading to light-activation of associated enzyme domains. The apparent widespread nature of photocobilins implies involvement in light regulation of a wider array of biochemical processes, and thus expands the scope for B12 photobiology. Their characterisation provides inspiration for the design of broad-spectrum optogenetic tools and next generation bio-photocatalysts.


Assuntos
Pigmentos Biliares , Fotorreceptores Microbianos , Fotoquímica , Biliverdina , Proteínas de Bactérias/metabolismo , Fotorreceptores Microbianos/química , Luz
2.
Nature ; 626(8000): 905-911, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38355794

RESUMO

High-intensity femtosecond pulses from an X-ray free-electron laser enable pump-probe experiments for the investigation of electronic and nuclear changes during light-induced reactions. On timescales ranging from femtoseconds to milliseconds and for a variety of biological systems, time-resolved serial femtosecond crystallography (TR-SFX) has provided detailed structural data for light-induced isomerization, breakage or formation of chemical bonds and electron transfer1,2. However, all ultrafast TR-SFX studies to date have employed such high pump laser energies that nominally several photons were absorbed per chromophore3-17. As multiphoton absorption may force the protein response into non-physiological pathways, it is of great concern18,19 whether this experimental approach20 allows valid conclusions to be drawn vis-à-vis biologically relevant single-photon-induced reactions18,19. Here we describe ultrafast pump-probe SFX experiments on the photodissociation of carboxymyoglobin, showing that different pump laser fluences yield markedly different results. In particular, the dynamics of structural changes and observed indicators of the mechanistically important coherent oscillations of the Fe-CO bond distance (predicted by recent quantum wavepacket dynamics21) are seen to depend strongly on pump laser energy, in line with quantum chemical analysis. Our results confirm both the feasibility and necessity of performing ultrafast TR-SFX pump-probe experiments in the linear photoexcitation regime. We consider this to be a starting point for reassessing both the design and the interpretation of ultrafast TR-SFX pump-probe experiments20 such that mechanistically relevant insight emerges.


Assuntos
Artefatos , Lasers , Mioglobina , Cristalografia/instrumentação , Cristalografia/métodos , Elétrons , Mioglobina/química , Mioglobina/metabolismo , Mioglobina/efeitos da radiação , Fótons , Conformação Proteica/efeitos da radiação , Teoria Quântica , Raios X
3.
JACS Au ; 4(1): 92-100, 2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38274251

RESUMO

Amyloid aggregation of the intrinsically disordered protein (IDP) tau is involved in several diseases, called tauopathies. Some tauopathies can be inherited due to mutations in the gene encoding tau, which might favor the formation of tau amyloid fibrils. This work aims at deciphering the mechanisms through which the disease-associated single-point mutations promote amyloid formation. We combined biochemical and biophysical characterization, notably, small-angle X-ray scattering (SAXS), to study six different FTDP-17 derived mutations. We found that the mutations promote aggregation to different degrees and can modulate tau conformational ensembles, intermolecular interactions, and liquid-liquid phase separation propensity. In particular, we found a good correlation between the aggregation lag time of the mutants and their radii of gyration. We show that mutations disfavor intramolecular protein interactions, which in turn favor extended conformations and promote amyloid aggregation. This work proposes a new connection between the structural features of tau monomers and their propensity to aggregate, providing a novel assay to evaluate the aggregation propensity of IDPs.

4.
Curr Opin Struct Biol ; 82: 102662, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37573816

RESUMO

In this review, we describe recent research developments into radiation damage effects in macromolecular X-ray crystallography observed at synchrotrons and X-ray free electron lasers. Radiation damage in small molecule X-ray crystallography, small angle X-ray scattering experiments, microelectron diffraction, and single particle cryo-electron microscopy is briefly covered.


Assuntos
Elétrons , Síncrotrons , Microscopia Crioeletrônica , Cristalografia por Raios X , Raios X , Difração de Raios X
5.
Nat Commun ; 14(1): 5082, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37604813

RESUMO

CarH is a coenzyme B12-dependent photoreceptor involved in regulating carotenoid biosynthesis. How light-triggered cleavage of the B12 Co-C bond culminates in CarH tetramer dissociation to initiate transcription remains unclear. Here, a series of crystal structures of the CarH B12-binding domain after illumination suggest formation of unforeseen intermediate states prior to tetramer dissociation. Unexpectedly, in the absence of oxygen, Co-C bond cleavage is followed by reorientation of the corrin ring and a switch from a lower to upper histidine-Co ligation, corresponding to a pentacoordinate state. Under aerobic conditions, rapid flash-cooling of crystals prior to deterioration upon illumination confirm a similar B12-ligand switch occurs. Removal of the upper His-ligating residue prevents monomer formation upon illumination. Combined with detailed solution spectroscopy and computational studies, these data demonstrate the CarH photoresponse integrates B12 photo- and redox-chemistry to drive large-scale conformational changes through stepwise Co-ligation changes.


Assuntos
Temperatura Baixa , Histidina , Ligantes , Oxirredução , Iluminação
6.
Curr Opin Struct Biol ; 77: 102496, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36462226

RESUMO

The structural dynamics underlying molecular mechanisms of light-sensitive proteins can be studied by a variety of experimental and computational biophysical techniques. Here we review recent progress in combining time-resolved crystallography at X-ray free electron lasers and quantum chemical calculations to study structural changes in photoenzymes, photosynthetic proteins, photoreceptors, and photoswitchable fluorescent proteins following photoexcitation.


Assuntos
Lasers , Proteínas , Cristalografia por Raios X , Proteínas/química , Raios X
7.
Acta Crystallogr D Struct Biol ; 78(Pt 9): 1131-1142, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36048153

RESUMO

Upon absorption of a blue-light photon, fatty-acid photodecarboxylase catalyzes the decarboxylation of free fatty acids to form hydrocarbons (for example alkanes or alkenes). The major components of the catalytic mechanism have recently been elucidated by combining static and time-resolved serial femtosecond crystallography (TR-SFX), time-resolved vibrational and electronic spectroscopies, quantum-chemical calculations and site-directed mutagenesis [Sorigué et al. (2021), Science, 372, eabd5687]. The TR-SFX experiments, which were carried out at four different picosecond to microsecond pump-probe delays, yielded input for the calculation of Fourier difference maps that demonstrated light-induced decarboxylation. Here, some of the difficulties encountered during the experiment as well as during data processing are highlighted, in particular regarding space-group assignment, a pump-laser power titration is described and data analysis is extended by structure-factor extrapolation of the TR-SFX data. Structure refinement against extrapolated structure factors reveals a reorientation of the generated hydrocarbon and the formation of a photoproduct close to Cys432 and Arg451. Identification of its chemical nature, CO2 or bicarbonate, was not possible because of the limited data quality, which was assigned to specificities of the crystalline system. Further TR-SFX experiments on a different crystal form are required to identify the photoproducts and their movements during the catalytic cycle.


Assuntos
Ácidos Graxos , Lasers , Cristalografia , Cristalografia por Raios X , Luz , Análise Espectral
8.
J Vis Exp ; (182)2022 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-35575532

RESUMO

Neutron scattering offers the possibility to probe the dynamics within samples for a wide range of energies in a nondestructive manner and without labeling other than deuterium. In particular, neutron backscattering spectroscopy records the scattering signals at multiple scattering angles simultaneously and is well suited to study the dynamics of biological systems on the ps-ns timescale. By employing D2O-and possibly deuterated buffer components-the method allows monitoring of both center-of-mass diffusion and backbone and side-chain motions (internal dynamics) of proteins in liquid state. Additionally, hydration water dynamics can be studied by employing powders of perdeuterated proteins hydrated with H2O. This paper presents the workflow employed on the instrument IN16B at the Institut Laue-Langevin (ILL) to investigate protein and hydration water dynamics. The preparation of solution samples and hydrated protein powder samples using vapor exchange is explained. The data analysis procedure for both protein and hydration water dynamics is described for different types of datasets (quasielastic spectra or fixed-window scans) that can be obtained on a neutron backscattering spectrometer. The method is illustrated with two studies involving amyloid proteins. The aggregation of lysozyme into µm sized spherical aggregates-denoted particulates-is shown to occur in a one-step process on the space and time range probed on IN16B, while the internal dynamics remains unchanged. Further, the dynamics of hydration water of tau was studied on hydrated powders of perdeuterated protein. It is shown that translational motions of water are activated upon the formation of amyloid fibers. Finally, critical steps in the protocol are discussed as to how neutron scattering is positioned regarding the study of dynamics with respect to other experimental biophysical methods.


Assuntos
Nêutrons , Água , Difração de Nêutrons/métodos , Pós/química , Proteínas , Análise Espectral , Água/química
9.
J Phys Chem Lett ; 13(5): 1194-1202, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35085441

RESUMO

RsEGFP2 is a reversibly photoswitchable fluorescent protein used in super-resolved optical microscopies, which can be toggled between a fluorescent On state and a nonfluorescent Off state. Previous time-resolved ultraviolet-visible spectroscopic studies have shown that the Off-to-On photoactivation extends over the femto- to millisecond time scale and involves two picosecond lifetime excited states and four ground state intermediates, reflecting a trans-to-cis excited state isomerization, a millisecond deprotonation, and protein structural reorganizations. Femto- to millisecond time-resolved multiple-probe infrared spectroscopy (TRMPS-IR) can reveal structural aspects of intermediate species. Here we apply TRMPS-IR to rsEGFP2 and implement a Savitzky-Golay derivative analysis to correct for baseline drift. The results reveal that a subpicosecond twisted excited state precursor controls the trans-to-cis isomerization and the chromophore reaches its final position in the protein pocket within 100 ps. A new step with a time constant of 42 ns is reported and assigned to structural relaxation of the protein that occurs prior to the deprotonation of the chromophore on the millisecond time scale.


Assuntos
Proteínas Luminescentes/química , Compostos de Benzilideno/química , Compostos de Benzilideno/efeitos da radiação , Imidazóis/química , Imidazóis/efeitos da radiação , Isomerismo , Proteínas Luminescentes/efeitos da radiação , Conformação Proteica , Espectrofotometria Infravermelho
10.
FEBS J ; 289(3): 576-595, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-33864718

RESUMO

Dynamical changes in protein structures are essential for protein function and occur over femtoseconds to seconds timescales. X-ray free electron lasers have facilitated investigations of structural dynamics in proteins with unprecedented temporal and spatial resolution. Light-activated proteins are attractive targets for time-resolved structural studies, as the reaction chemistry and associated protein structural changes can be triggered by short laser pulses. Proteins with different light-absorbing centres have evolved to detect light and harness photon energy to bring about downstream chemical and biological output responses. Following light absorption, rapid chemical/small-scale structural changes are typically localised around the chromophore. These localised changes are followed by larger structural changes propagated throughout the photoreceptor/photocatalyst that enables the desired chemical and/or biological output response. Time-resolved serial femtosecond crystallography (SFX) and solution scattering techniques enable direct visualisation of early chemical change in light-activated proteins on timescales previously inaccessible, whereas scattering gives access to slower timescales associated with more global structural change. Here, we review how advances in time-resolved SFX and solution scattering techniques have uncovered mechanisms of photochemistry and its coupling to output responses. We also provide a prospective on how these time-resolved structural approaches might impact on other photoreceptors/photoenzymes that have not yet been studied by these methods.


Assuntos
Cristalografia por Raios X , Conformação Proteica/efeitos da radiação , Proteínas/ultraestrutura , Lasers , Luz , Modelos Moleculares , Proteínas/química , Proteínas/efeitos da radiação , Fatores de Tempo , Difração de Raios X
11.
J Synchrotron Radiat ; 28(Pt 5): 1278-1283, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34475277

RESUMO

An understanding of radiation damage effects suffered by biological samples during structural analysis using both X-rays and electrons is pivotal to obtain reliable molecular models of imaged molecules. This special issue on radiation damage contains six papers reporting analyses of damage from a range of biophysical imaging techniques. For X-ray diffraction, an in-depth study of multi-crystal small-wedge data collection single-wavelength anomalous dispersion phasing protocols is presented, concluding that an absorbed dose of 5 MGy per crystal was optimal to allow reliable phasing. For small-angle X-ray scattering, experiments are reported that evaluate the efficacy of three radical scavengers using a protein designed to give a clear signature of damage in the form of a large conformational change upon the breakage of a disulfide bond. The use of X-rays to induce OH radicals from the radiolysis of water for X-ray footprinting are covered in two papers. In the first, new developments and the data collection pipeline at the NSLS-II high-throughput dedicated synchrotron beamline are described, and, in the second, the X-ray induced changes in three different proteins under aerobic and low-oxygen conditions are investigated and correlated with the absorbed dose. Studies in XFEL science are represented by a report on simulations of ultrafast dynamics in protic ionic liquids, and, lastly, a broad coverage of possible methods for dose efficiency improvement in modalities using electrons is presented. These papers, as well as a brief synopsis of some other relevant literature published since the last Journal of Synchrotron Radiation Special Issue on Radiation Damage in 2019, are summarized below.


Assuntos
Substâncias Macromoleculares/química , Substâncias Macromoleculares/efeitos da radiação , Biofísica , Cristalografia por Raios X , Elétrons , Doses de Radiação , Lesões por Radiação , Espalhamento de Radiação , Síncrotrons , Difração de Raios X
12.
Phys Rev Lett ; 126(8): 088102, 2021 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-33709739

RESUMO

The interaction between proteins and hydration water stabilizes protein structure and promotes functional dynamics, with water translational motions enabling protein flexibility. Engineered solvent-free protein-polymer hybrids have been shown to preserve protein structure, function, and dynamics. Here, we used neutron scattering, protein and polymer perdeuteration, and molecular dynamics simulations to explore how a polymer dynamically replaces water. Even though relaxation rates and vibrational properties are strongly modified in polymer coated compared to hydrated proteins, liquidlike polymer dynamics appear to plasticize the conjugated protein in a qualitatively similar way as do hydration-water translational motions.


Assuntos
Polímeros/química , Proteínas/química , Diaminas/química , Glicolatos/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Mioglobina/química , Difração de Nêutrons , Polietilenoglicóis/química , Conformação Proteica , Termodinâmica , Água/química
13.
Biophys J ; 120(5): 886-898, 2021 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-33545104

RESUMO

Protein aggregation is a widespread process leading to deleterious consequences in the organism, with amyloid aggregates being important not only in biology but also for drug design and biomaterial production. Insulin is a protein largely used in diabetes treatment, and its amyloid aggregation is at the basis of the so-called insulin-derived amyloidosis. Here, we uncover the major role of zinc in both insulin dynamics and aggregation kinetics at low pH, in which the formation of different amyloid superstructures (fibrils and spherulites) can be thermally induced. Amyloid aggregation is accompanied by zinc release and the suppression of water-sustained insulin dynamics, as shown by particle-induced x-ray emission and x-ray absorption spectroscopy and by neutron spectroscopy, respectively. Our study shows that zinc binding stabilizes the native form of insulin by facilitating hydration of this hydrophobic protein and suggests that introducing new binding sites for zinc can improve insulin stability and tune its aggregation propensity.


Assuntos
Amiloide , Zinco , Humanos , Insulina , Cinética , Espectroscopia por Absorção de Raios X
14.
Front Chem ; 8: 455, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32626684

RESUMO

Neutron diffraction was used to study the behavior of water present in phospholipid multilamellar stacks from 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) at cryogenic temperatures. Evidence was found for the existence of a highly viscous phase of water that exists between 180 and 220 K based on the observation that water can leave the intermembrane space at these low temperatures. Similar measurements are described in the literature for purple membrane (PM) samples. From a comparison with results from this natural membrane by using the same flash-cooling protocol, it is found that in the case of pure lipid samples, less water is trapped and the water flows out at lower temperatures. This suggests that the water is less hindered in its movements than in the PM case. It is shown that at least the Lß'-phase of DMPC can be trapped likely by flash cooling; upon heating to about 260 K, it transforms to another phase that was not fully characterized.

15.
J Phys Chem Lett ; 11(15): 6299-6304, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32663030

RESUMO

Proteins can misfold and form either amorphous or organized aggregates with different morphologies and features. Aggregates of amyloid nature are pathological hallmarks in so-called protein conformational diseases, including Alzheimer's and Parkinson's. Evidence prevails that the transient early phases of the reaction determine the aggregate morphology and toxicity. As a consequence, real-time monitoring of protein aggregation is of utmost importance. Here, we employed time-resolved neutron backscattering spectroscopy to follow center-of-mass self-diffusion and nano- to picosecond internal dynamics of lysozyme during aggregation into a specific ß-sheet rich superstructure, called particulates, formed at the isoelectric point of the protein. Particulate formation is found to be a one-step process, and protein internal dynamics, to remain unchanged during the entire aggregation process. The time-resolved neutron backscattering spectroscopy approach developed here, in combination with standard kinetics assays, provides a unifying framework in which dynamics and conformational transitions can be related to the different aggregation pathways.


Assuntos
Muramidase/química , Agregados Proteicos , Análise Espectral/métodos , Difusão , Cinética , Modelos Moleculares , Nêutrons , Conformação Proteica
16.
Nat Commun ; 11(1): 1153, 2020 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-32123169

RESUMO

Cyt1Aa is the one of four crystalline protoxins produced by mosquitocidal bacterium Bacillus thuringiensis israelensis (Bti) that has been shown to delay the evolution of insect resistance in the field. Limiting our understanding of Bti efficacy and the path to improved toxicity and spectrum has been ignorance of how Cyt1Aa crystallizes in vivo and of its mechanism of toxicity. Here, we use serial femtosecond crystallography to determine the Cyt1Aa protoxin structure from sub-micron-sized crystals produced in Bti. Structures determined under various pH/redox conditions illuminate the role played by previously uncharacterized disulfide-bridge and domain-swapped interfaces from crystal formation in Bti to dissolution in the larval mosquito midgut. Biochemical, toxicological and biophysical methods enable the deconvolution of key steps in the Cyt1Aa bioactivation cascade. We additionally show that the size, shape, production yield, pH sensitivity and toxicity of Cyt1Aa crystals grown in Bti can be controlled by single atom substitution.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Endotoxinas/química , Endotoxinas/metabolismo , Proteínas Hemolisinas/química , Proteínas Hemolisinas/metabolismo , Animais , Toxinas de Bacillus thuringiensis , Proteínas de Bactérias/genética , Proteínas de Bactérias/farmacologia , Membrana Celular/efeitos dos fármacos , Cristalografia por Raios X , Dissulfetos/química , Endotoxinas/genética , Endotoxinas/farmacologia , Células HEK293 , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Inseticidas/química , Inseticidas/metabolismo , Inseticidas/farmacologia , Camundongos , Microscopia de Força Atômica , Células NIH 3T3 , Conformação Proteica , Células Sf9
17.
J Struct Biol ; 210(2): 107478, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32087239

RESUMO

L-Lactate dehydrogenase (LDH) is a model protein allowing to shed light on the fundamental molecular mechanisms that drive the acquisition, evolution and regulation of enzyme properties. In this study, we test the hypothesis of a link between thermal stability of LDHs and their capacity against unfolding induced by reactive oxygen species (ROS) generated by γ-rays irradiation. By using circular dichroism spectroscopy, we analysed that high thermal stability of a thermophilic LDH favours strong resistance against ROS-induced unfolding, in contrast to its psychrophilic and mesophilic counterparts that are less resistant. We suggest that a protein's phenotype linking strong thermal stability and resistance against ROS damages would have been a selective evolutionary advantage. We also find that the enzymatic activity of the thermophilic LDH that is strongly resistant against ROS-unfolding is very sensitive to inactivation by irradiation. To address this counter-intuitive observation, we combined mass spectrometry analyses and enzymatic activity measurements. We demonstrate that the dramatic change on LDH activity was linked to remote chemical modifications away from the active site, that change the equilibrium between low-affinity tense (T-inactive) and high-affinity relaxed (R-active) forms. We found the T-inactive thermophilic enzyme obtained after irradiation can recover its LDH activity by addition of the allosteric effector 1, 6 fructose bis phosphate. We analyse our data within the general framework of allosteric regulation, which requires that an enzyme in solution populates a large diversity of dynamically-interchanging conformations. Our work demonstrates that the radiation-induced inactivation of an enzyme is controlled by its dynamical properties.


Assuntos
L-Lactato Desidrogenase/metabolismo , Regulação Alostérica , Sítios de Ligação , Domínio Catalítico , Radicais Livres/química , Cinética , L-Lactato Desidrogenase/genética , Estresse Oxidativo/genética , Estresse Oxidativo/fisiologia , Relação Estrutura-Atividade
18.
Nat Commun ; 11(1): 741, 2020 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-32029745

RESUMO

Reversibly switchable fluorescent proteins (RSFPs) serve as markers in advanced fluorescence imaging. Photoswitching from a non-fluorescent off-state to a fluorescent on-state involves trans-to-cis chromophore isomerization and proton transfer. Whereas excited-state events on the ps timescale have been structurally characterized, conformational changes on slower timescales remain elusive. Here we describe the off-to-on photoswitching mechanism in the RSFP rsEGFP2 by using a combination of time-resolved serial crystallography at an X-ray free-electron laser and ns-resolved pump-probe UV-visible spectroscopy. Ten ns after photoexcitation, the crystal structure features a chromophore that isomerized from trans to cis but the surrounding pocket features conformational differences compared to the final on-state. Spectroscopy identifies the chromophore in this ground-state photo-intermediate as being protonated. Deprotonation then occurs on the µs timescale and correlates with a conformational change of the conserved neighbouring histidine. Together with a previous excited-state study, our data allow establishing a detailed mechanism of off-to-on photoswitching in rsEGFP2.

19.
Proc Natl Acad Sci U S A ; 117(8): 4142-4151, 2020 02 25.
Artigo em Inglês | MEDLINE | ID: mdl-32047034

RESUMO

Radiation damage limits the accuracy of macromolecular structures in X-ray crystallography. Cryogenic (cryo-) cooling reduces the global radiation damage rate and, therefore, became the method of choice over the past decades. The recent advent of serial crystallography, which spreads the absorbed energy over many crystals, thereby reducing damage, has rendered room temperature (RT) data collection more practical and also extendable to microcrystals, both enabling and requiring the study of specific and global radiation damage at RT. Here, we performed sequential serial raster-scanning crystallography using a microfocused synchrotron beam that allowed for the collection of two series of 40 and 90 full datasets at 2- and 1.9-Å resolution at a dose rate of 40.3 MGy/s on hen egg white lysozyme (HEWL) crystals at RT and cryotemperature, respectively. The diffraction intensity halved its initial value at average doses (D1/2) of 0.57 and 15.3 MGy at RT and 100 K, respectively. Specific radiation damage at RT was observed at disulfide bonds but not at acidic residues, increasing and then apparently reversing, a peculiar behavior that can be modeled by accounting for differential diffraction intensity decay due to the nonuniform illumination by the X-ray beam. Specific damage to disulfide bonds is evident early on at RT and proceeds at a fivefold higher rate than global damage. The decay modeling suggests it is advisable not to exceed a dose of 0.38 MGy per dataset in static and time-resolved synchrotron crystallography experiments at RT. This rough yardstick might change for proteins other than HEWL and at resolutions other than 2 Å.


Assuntos
Cristalografia por Raios X/métodos , Muramidase/química , Síncrotrons , Temperatura , Cristalização
20.
IUCrJ ; 6(Pt 5): 832-842, 2019 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-31576217

RESUMO

A combined biophysical approach was applied to map gas-docking sites within murine neuroglobin (Ngb), revealing snapshots of events that might govern activity and dynamics in this unique hexacoordinate globin, which is most likely to be involved in gas-sensing in the central nervous system and for which a precise mechanism of action remains to be elucidated. The application of UV-visible microspectroscopy in crystallo, solution X-ray absorption near-edge spectroscopy and X-ray diffraction experiments at 15-40 K provided the structural characterization of an Ngb photolytic intermediate by cryo-trapping and allowed direct observation of the relocation of carbon monoxide within the distal heme pocket after photodissociation. Moreover, X-ray diffraction at 100 K under a high pressure of dioxygen, a physiological ligand of Ngb, unravelled the existence of a storage site for O2 in Ngb which coincides with Xe-III, a previously described docking site for xenon or krypton. Notably, no other secondary sites were observed under our experimental conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...